Translate

martes, 22 de octubre de 2013

LA ROBÓTICA Y SUS APLICACIONES

La robótica es la rama de la tecnología que se dedica al diseño, construcción, operación, disposición estructural, manufactura y aplicación de los robots. La robótica combina diversas disciplinas como son: la mecánica, la electrónica, la informática, la inteligencia artificial, la ingeniería de control y la física. Otras áreas importantes en robótica son el álgebra, los autómatas programables, la animatrónica y las máquinas de estados.El término robot se popularizó con el éxito de la obra RUR (Robots Universales Rossum), escrita por Karel Capek en 1920. En la traducción al inglés de dicha obra, la palabra checa robota, que significa trabajos forzados, fue traducida al inglés como robot.

http://es.wikipedia.org/w/index.php?title=Rob%C3%B3tica&printable=yes









http://innovaipninformatica.blogspot.com/2013/03/que-es-la-robotica-la-robotica-es-la.html

En ciencia ficción las tres leyes de la robótica son un conjunto de normas escritas por Isaac Asimov, que la mayoría de los robots de sus novelas y cuentos están diseñados para cumplir. En ese universo, las leyes son "formulaciones matemáticas impresas en los senderos positrónicos del cerebro" de los robots (líneas de código del programa de funcionamiento del robot guardadas en la ROM del mismo). Aparecidas por primera vez en el relato Runaround (1942), establecen lo siguiente:


1º Un robot no puede hacer daño a un ser humano o, por inacción, permitir que un ser humano sufra daño.

2º Un robot debe obedecer las órdenes dadas por los seres humanos, excepto si estas órdenes entrasen en conflicto con la 1ª Ley.
3º Un robot debe proteger su propia existencia en la medida en que esta protección no entre en conflicto con la 1ª o la 2ª Ley.

Esta redacción de las leyes es la forma convencional en la que los humanos de las historias las enuncian; su forma real sería la de una serie de instrucciones equivalentes y mucho más complejas en el cerebro del robot.Asimov atribuye las tres Leyes a John W. Campbell, que las habría redactado durante una conversación sostenida el 23 de diciembre de 1940. Sin embargo, Campbell sostiene que Asimov ya las tenía pensadas, y que simplemente las expresaron entre los dos de una manera más formal.Las tres leyes aparecen en un gran número de historias de Asimov, ya que aparecen en toda su serie de los robots, así como en varias historias relacionadas, y la serie de novelas protagonizadas por Lucky Starr. También han sido utilizadas por otros autores cuando han trabajado en el universo de ficción de Asimov, y son frecuentes las referencias a ellas en otras obras, tanto de ciencia ficción como de otros géneros.
http://es.wikipedia.org/wiki/Tres_leyes_de_la_rob%C3%B3tica

http://roboticamaselectronica.blogspot.com/2008/04/qu-es-la-robtica-aplicaciones.html

La historia de la robótica ha estado unida a la construcción de “artefactos”, que trataban de materializar el deseo humano de crear seres semejantes a nosotros que nos descargasen del trabajo. El ingeniero español Leonardo Torres Quevedo (que construyó el primer mando a distancia para su torpedo automóvil mediante telegrafía sin hilodrecista automático, el primer transbordador aéreo y otros muchos ingénios) acuñó el término “automática” en relación con la teoría de la automatización de tareas tradicionalmente asociadas a los humanos.

http://robotica.wordpress.com/about/



FIBRA ÓPTICA


GENERALIDADES:

A comienzos de la década de 1840, El físico irlandés John Tyndall descubrió que la luz podía viajar dentro de un material (agua), al curvarse por reflexión interna, y en 1870 presentó sus estudios ante los miembros de la Real Sociedad.
En 1880, Alexander Graham Bell fue el primero en utilizar la luz como medio de transmisión y encontró que en la atmosfera se atenuaban las señales debido a las partículas de aire y vapor de agua.
La búsqueda de un medio para trasmitir luz que fuera inmune a perturbaciones y más confiable continuó y, finalmente, en 1951 se encontraron atenuaciones del haz de luz enviado a través de un hilo llamado fibra óptica en rangos que permitían una aceptable transmisión de información por este medio. A finales de la década del 70 y principios de los 80´s de ese siglo el avance en la fabricación de estos cables ópticos y el desarrollo de las tecnologías LED (Light Emmiting Diode) y LASER (Light Amplification by Stimulated Emission of Radiation) permitieron iniciar el desarrollo de sistemas de comunicación eficientes, confiables y de alta capacidad que utilizan la fibra como medio de transmisión, para dar inicio a una nueva era tecnológica en materia de soluciones para la transmisión de información de gran capacidad.

http://www.mintic.gov.co/index.php/direccion-conectividad/proyectos/proyecto-nacional-fibra-optica/ab

File:Fiber optic illuminated.jpg
http://upload.wikimedia.org/wikipedia/commons/8/85/Fiber_optic_illuminated.jpg



La fibra óptica es un medio de transmisión empleado habitualmente en redes de datos; un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir. El haz de luz queda completamente confinado y se propaga por el interior de la fibra con un ángulo de reflexión por encima del ángulo límite de reflexión total, en función de la ley de Snell. La fuente de luz puede ser láser o un LED.
Las fibras se utilizan ampliamente en telecomunicaciones, ya que permiten enviar gran cantidad de datos a una gran distancia, con velocidades similares a las de radio y superiores a las de cable convencional. Son el medio de transmisión por excelencia al ser inmune a las interferencias electromagnéticas, también se utilizan para redes locales, en donde se necesite aprovechar las ventajas de la fibra óptica sobre otros medios de transmisión.

http://es.wikipedia.org/wiki/Fibra_%C3%B3ptica

http://upload.wikimedia.org/wikipedia/commons/4/49/Fibreoptic.jpg



El uso de la luz para la codificación de señales no es nuevo, los antiguos griegos usaban espejos para transmitir información, de modo rudimentario, usando luz solar. En 1792,Claude Chappe diseñó un sistema de telegrafía óptica, que mediante el uso de un código y torres y espejos distribuidos a lo largo de los 200 km que separan Lille y París, conseguía transmitir un mensaje en tan sólo 16 minutos.
La gran novedad aportada en nuestra época es la de haber conseguido “domar” la luz, de modo que sea posible que se propague dentro de un cable tendido por el hombre. El uso de la luz guiada, de modo que no expanda en todas direcciones, sino en una muy concreta y predefinida se ha conseguido mediante la fibra óptica, que podemos pensar como un conducto de vidrio -fibra de vidrio ultra delgada- protegida por un material aislante que sirve para transportar la señal lumínica de un punto a otro.

Además tiene muchas otras ventajas, como bajas pérdidas de señal, tamaño y peso reducido, inmunidad frente a emisiones electromagnéticas y de radiofrecuencia y seguridad.
Como resultado de estudios en física enfocados de la óptica, se descubrió un nuevo modo de empleo para la luz llamado rayo láser. Este último es usado con mayor vigor en el área de las telecomunicaciones, debido a lo factible que es enviar mensajes con altas velocidades y con una amplia cobertura. Sin embargo, no existía un conducto para hacer viajar los fotones originados por el láser.
http://es.wikipedia.org/wiki/Fibra_%C3%B3ptica



martes, 15 de octubre de 2013

EL RAYO LÁSER

Un láser (de la sigla inglesa light amplification by stimulated emission of radiation, amplificación de luz por emisión estimulada de radiación) es un dispositivo que utiliza un efecto de la mecánica cuántica, la emisión inducida o lastrear, para generar un haz de luz coherente de un medio adecuado y con el tamaño, la forma y la pureza controlados.

En 1916, Albert Einstein estableció los fundamentos para el desarrollo de los láseres y de sus predecesores, los máseres (que emiten microondas), utilizando la ley de radiación de Max Planck basada en los conceptos de emisión espontánea e inducida de radiación.

En 1928 Rudolf Landenburg informó haber obtenido la primera evidencia del fenómeno de emisión estimulada de radiación, aunque no pasó de ser una curiosidad de laboratorio, por lo que la teoría fue olvidada hasta después de la Segunda Guerra Mundial, cuando fue demostrada definitivamente por Willis Eugene Lamb y R. C. Rutherford.
En 1953, Charles H. Townes y los estudiantes de postgrado James P. Gordon y Herbert J. Zeiger construyeron el primerl láser: un dispositivo que funcionaba con los mismos principios físicos que el láser pero que produce un haz coherente de microondas. El máser de Townes era incapaz de funcionar en continuo. Nikolái Básov y Aleksandr Prójorov de la Unión Soviética trabajaron independientemente en el oscilador cuántico y resolvieron el problema de obtener un máser de salida de luz continua, utilizando sistemas con más de dos niveles de energía. Townes, Básov y Prójorov compartieron el Premio Nobel de Física en 1964 por "los trabajos fundamentales en el campo de la electrónica cuántica", los cuales condujeron a la construcción de osciladores y amplificadores basados en los principios de los máser-láser.
El primer láser fue uno de rubí y funcionó por primera vez el 16 de mayo de 1960. Fue construido por Theodore Maiman. El hecho de que sus resultados se publicaran con algún retraso en Nature, dio tiempo a la puesta en marcha de otros desarrollos paralelos.2 3 Por este motivo, Townes y Arthur Leonard Schawlow también son considerados inventores del láser, el cual patentaron en 1960. Dos años después, Robert Hall inventa el láser generado por semiconductor. En 1969 se encuentra la primera aplicación industrial del láser al ser utilizado en las soldaduras de los elementos de chapa en la fabricación de vehículos y, al año siguiente Gordon Gould patenta otras muchas aplicaciones prácticas para el láser.
http://es.wikipedia.org/w/index.php?title=L%C3%A1ser&printable=yes
File:Laser.svg
http://commons.wikimedia.org/wiki/File:Laser.svg
Propiedades:



La radiación láser se caracteriza por una serie de propiedades, diferentes de cualquier otra fuente de radiación electromagnética, como son:



Monocromaticidad: emite una radiación electromagnética de una sola longitud de onda, en oposición a las fuentes convencionales como las lámparas incandescentes (bombillas comunes) que emiten en un rango más amplio, entre el visible y el infrarrojo, de ahí que desprendan calor. La longitud de onda, en el rango del espectro electromagnético de la luz visible, se identifica por los diferentes colores (rojo, naranja, amarillo, verde, azul, violeta), estando la luz blanca compuesta por todos ellos. Esto se observa fácilmente al hacer pasar un haz de luz blanca a través de un prisma.


Coherencia espacial o direccionabilidad: la radiación láser tiene una divergencia muy pequeña, es decir, puede ser proyectado a largas distancias sin que el haz se abra o disemine la misma cantidad de energía en un área mayor. Esta propiedad se utilizó para calcular la longitud entre la Tierra y la Luna, al enviar un haz láser hacia la Luna, donde rebotó sobre un pequeño espejo situado en su superficie, y éste fue medido en la Tierra por un telescopio.

Coherencia temporal: La luz láser se transmite de modo paralelo en una única dirección debido a su naturaleza de radiación estimulada, al estar constituido el haz láser con rayos de la misma fase, frecuencia y amplitud.

Tipos de Láser:



Existen numerosos tipos de láser que se pueden clasificar de muy diversas formas siendo la más común la que se refiere a su medio activo o conjunto de átomos o moléculas que pueden excitarse de manera que se crea una situación de inversión de población obteniéndose radiación electromagnética mediante emisión estimulada. Este medio puede encontrarse en cualquier estado de la materia: sólido, líquido, gas o plasma.



El primer láser fue desarrollado por Maiman en 1960 utilizando como medio activo un cristal cilíndrico de rubí. El láser de gas de CO2, que emite en el rango del infrarrojo, es capaz de proporcionar grandes potencias y presenta un gran rendimiento, por ello es el más usado.


Éste tipo de láser es utilizado en numerosas y diversas aplicaciones, como por ejemplo en la manufactura industrial, comunicaciones, soldadura y cortado de acero, entre otras.

Los láser de Ión Argon y Krypton son utilizados en las discotecas ya que emiten en el rango del espectro visible.


El láser Nd:YAG pertenece al grupo de los láser de estado sólido y emite también en el rango del infrarrojo, siendo ampliamente empleado como en el tratamiento oftalmológico de las cataratas, en medicina estética o en procesos industriales, como tratamientos de superficie y mecanizados.

Los láser de diodo están construidos con materiales semiconductores son cada vez más utilizados debido a sus ventajosas características, como un menor tamaño y elevadas potencias de trabajo. Sin embargo la calidad de salida del haz es menor que con láser.


http://www.ucontrol.com.ar/Articulos/el_rayo_laser/el_rayo_laser.htm

Aplicaciones:

La medición de distancias con alta velocidad y precisión fue una aplicación militar inmediata después de que se inventara el láser, para el lanzamiento de artillería o para el cálculo de la distancia entre la Luna y la tierra (384.403 km.), con una exactitud de tan sólo 1 milímetro. También es utilizado en el seguimiento de un blanco en movimiento al viajar el haz a la velocidad de la luz.


http://blog.ciencias-medicas.com/archives/77 




http://www.youtube.com/watch?v=WoDNsiSlodo